Abstract - In the present contribution, we aim to present the osteology of ‘ULBRA-PVT-281’, which comprises the best-preserved skeleton of Prestosuchus chiniquensis ever found. ULBRA-PVT-281 combines the morphology of two classic specimens referred to P. chiniquensis, UFRGS-PV-0156-T and UFRGSPV- 0152-T, reunited in a single operational taxonomic unit (OTU) in previous phylogenetic studies. Therefore, the new specimen reinforces the combination of both specimens. We performed a phylogenetic analysis, combining the information of these three specimens plus braincase data from a fourth specimen, UFRGS-PV-0629-T, into a new P. chiniquensis terminal taxon. Moreover, our analysis also included some new taxa potentially related to P. chiniquensis. As a result, we found a topology slightly distinct from previous studies, where Ticinosuchus ferox is the basalmost member of Loricata, which also includes the new combined P. chiniquensis. Our results place P. chiniquensis, Luperosuchus fractus, and Saurosuchus galilei distributed in a pectinate paraphyletic pattern towards Crocodylomorpha. On the other hand, a constrained analysis forcing the monophyly of these taxa demands just a single extra step. Therefore, both scenarios are plausible and agree with the placement of P. chiniquensis within Loricata, whereas T. ferox nests in Loricata only in the unconstrained analysis.
New Osteological and Phylogenetic Review of the Triassic Loricatan Prestosuchus chiniquensis from Brazil
Abstract - In the present contribution, we aim to present the osteology of ‘ULBRA-PVT-281’, which comprises the best-preserved skeleton of Prestosuchus chiniquensis ever found. ULBRA-PVT-281 combines the morphology of two classic specimens referred to P. chiniquensis, UFRGS-PV-0156-T and UFRGSPV- 0152-T, reunited in a single operational taxonomic unit (OTU) in previous phylogenetic studies. Therefore, the new specimen reinforces the combination of both specimens. We performed a phylogenetic analysis, combining the information of these three specimens plus braincase data from a fourth specimen, UFRGS-PV-0629-T, into a new P. chiniquensis terminal taxon. Moreover, our analysis also included some new taxa potentially related to P. chiniquensis. As a result, we found a topology slightly distinct from previous studies, where Ticinosuchus ferox is the basalmost member of Loricata, which also includes the new combined P. chiniquensis. Our results place P. chiniquensis, Luperosuchus fractus, and Saurosuchus galilei distributed in a pectinate paraphyletic pattern towards Crocodylomorpha. On the other hand, a constrained analysis forcing the monophyly of these taxa demands just a single extra step. Therefore, both scenarios are plausible and agree with the placement of P. chiniquensis within Loricata, whereas T. ferox nests in Loricata only in the unconstrained analysis.
Morphological and Biomechanical Disparity of Crocodile-line Archosaurs Following the End-Triassic Extinction
Stubb, T. L., Pierce, S. E., Rayfield, E. J., and P. S. L. Anderson. 2013. Morphological and biomechanical disparity of crocodile-line archosaurs following the end-Triassic extinction. Proceedings of the Royal Society B 280 no. 1770 20131940 doi: 10.1098/rspb.2013.1940
Abstract - Mesozoic crurotarsans exhibited diverse morphologies and feeding modes, representing considerable ecological diversity, yet macroevolutionary patterns remain unexplored. Here, we use a unique combination of morphological and biomechanical disparity metrics to quantify the ecological diversity and trophic radiations of Mesozoic crurotarsans, using the mandible as a morpho-functional proxy. We recover three major trends. First, the diverse assemblage of Late Triassic crurotarsans was morphologically and biomechanically disparate, implying high levels of ecological variation; but, following the end-Triassic extinction, disparity declined. Second, the Jurassic radiation of marine thalattosuchians resulted in very low morphological disparity but moderate variation in jaw biomechanics, highlighting a hydrodynamic constraint on mandibular form. Third, during the Cretaceous terrestrial radiations of neosuchians and notosuchians, mandibular morphological variation increased considerably. By the Late Cretaceous, crocodylomorphs evolved a range of morphologies equalling Late Triassic crurotarsans. By contrast, biomechanical disparity in the Cretaceous did not increase, essentially decoupling from morphology. This enigmatic result could be attributed to biomechanical evolution in other anatomical regions (e.g. cranium, dentition or postcranium), possibly releasing the mandible from selective pressures. Overall, our analyses reveal a complex relationship between morphological and biomechanical disparity in Mesozoic crurotarsans that culminated in specialized feeding ecologies and associated lifestyles.
Halticosaurus orbitoangulatus is a Pseudosuchian, Not a Dinosaur
Sues, H.-D., and R. R. Schoch. 2013. Reassessment of cf. Halticosaurus orbitoangulatus from the Upper Triassic (Norian) of Germany – a pseudosuchian, not a dinosaur. Zoological Journal of the Linnean Society 168(4): 859–872 DOI: 10.1111/zoj.12038
Abstract - The holotype of cf. Halticosaurus orbitoangulatus Huene, 1932, comprises an incomplete and macerated but associated skull of an archosaurian reptile from the middle (second) Stubensandstein (middle Löwenstein Formation; Upper Triassic: Norian) of Baden-Württemberg, Germany. It was originally interpreted as a theropod dinosaur but more recently it has been suggested that this taxon has crocodylomorph affinities. Detailed preparation of the holotype of cf. H. orbitoangulatus has revealed much new anatomical information and permitted reassessment of its affinities. The maxilla lacks both a distinct antorbital fossa and a medial bony lamina bordering the antorbital fenestra. The lateral surface of the dentary bears a pronounced horizontal ridge. The squamosal differs from that of basal crocodylomorphs in being L-shaped rather than arcuate in dorsal view, lacking a dorsolateral overhang, and lacking an interlocking contact with the paroccipital process as, for example, in the basal crocodylomorph Saltoposuchus connectens from the same horizon and locality. Phylogenetic analysis placed cf. H. orbitoangulatus amongst loricatan pseudosuchians (but not amongst Crocodylomorpha) rather than amongst theropod dinosaurs. The holotype of cf. H. orbitoangulatus represents a previously unrecognized taxon of loricatan pseudosuchian, which is here named Apatosuchus orbitoangulatus and set apart from other known Norian-age non-crocodylomorph loricatans by its apparently much smaller size.
Two New Early Archosaur Papers
Liparini, A., and C. L. Schultz. 2013. A reconstruction of the thigh musculature of the extinct pseudosuchian Prestosuchus chiniquensis from the Dinodontosaurus Assemblage Zone (Middle Triassic Epoch), Santa Maria 1 Sequence, southern Brazil. From Nesbitt, S. J., Desojo, J. B. & Irmis, R. B. (eds) Anatomy, Phylogeny and Palaeobiology of Early Archosaurs and their Kin. Geological Society, London, Special Publications, 379. http://sp.lyellcollection.org/content/early/2013/06/13/SP379.20.abstract
Abstract - Prestosuchus chiniquensis is an extinct species of terrestrial archosaur from the Middle Triassic Epoch restricted to southern Brazil. In this paper the thigh musculature of P. chiniquensis is reconstructed based on a well-preserved specimen and on myological descriptions of extant birds and crocodylians. Among the 16 analysed muscular groups, 13 were recognized as present and homologous to both extant groups of archosaurs, and two only to the crocodylian line of archosaurs, so that 15 muscular groups were reconstructed in the fossil specimen. Morphological particularities of the pelvic girdle and the hindlimbs of P. chiniquensis gave a distinct arrangement for the muscular origin and insertion sites, leading to different lines of action and functions when compared with extant archosaurs. The comparison between extinct and extant archosaurs showed a basal condition sustained in some aspects, such as the morphology of the femur and the flexion of the knee, although other aspects were considered as derived, such as the morphology of the pubis and ischium, and their associated muscle origin locations.
Raugust, T., Lacerda, M., and C. L. Schultz. 2013. The first occurrence of Chanaresuchus bonapartei Romer 1971 (Archosauriformes, Proterochampsia) of the Middle Triassic of Brazil from the Santacruzodon Assemblage Zone, Santa Maria Formation (Paraná Basin). From Nesbitt, S. J., Desojo, J. B. & Irmis, R. B. (eds) Anatomy, Phylogeny and Palaeobiology of Early Archosaurs and their Kin. Geological Society, London, Special Publications, 379.
http://sp.lyellcollection.org/content/early/2013/06/13/SP379.22.abstract
Abstract - Proterochampsians are basal archosauriforms whose record is restricted to the Middle and Upper Triassic in Argentina and Brazil. They are quadruped forms that present characteristics consistent with a semi-aquatic lifestyle, such as an anteroposteriorly elongated skull that is flattened dorsoventrally with dorsally located orbits. In 2003, specimen UFRGS-PV-0877-T was discovered at the Schoenstadt site, in the city of Santa Cruz do Sul (Santacruzodon Assemblage Zone, Santa Maria Formation). This specimen, consisting of disarticulated cranial elements (such as nasals, frontals, parietals, postorbitals, a left squamosal, a left pterygoid and a fragment of a right mandibular ramus that bears teeth) and postcranial elements (such as femora, the left tibia, one vertebral centrum and two rib fragments), is assigned to the ‘proterochampsian’ Chanaresuchus bonapartei Romer (1971). This assignment is based on the shared V-shaped frontal-parietal suture of the new specimen and Chanaresuchus bonapartei, which differs from the transversely aligned and zigzagged pattern of C. ischigualastensis.
Overview of the Aetosaurs
Abstract - Aetosauria is a clade of obligately quadrupedal, heavily armoured pseudosuchians known from Upper Triassic (late Carnian–Rhaetian) strata on every modern continent except Australia and Antarctica. As many as 22 genera and 26 species ranging from 1 to 6 m in length, and with a body mass ranging from less than 10 to more than 500 kg, are known. Aetosauroides scagliai was recently recovered as the most basal aetosaur, placed outside of Stagonolepididae (the last common ancestor of Desmatosuchus and Aetosaurus). Interrelationships among the basal aetosaurs are not well understood but two clades with relatively apomorphic armour – the spinose Desmatosuchinae and the generally wide-bodied Typothoracisinae – are consistently recognized. Paramedian and lateral osteoderms are often distinctive at the generic level but variation within the carapace is not well understood in many taxa, warranting caution in assigning isolated osteoderms to specific taxa. The aetosaur skull and dentition varies across taxa, and there is increasing evidence that at least some aetosaurs relied on invertebrates and/or small vertebrates as a food source. Histological evidence indicates that, after an initial period of rapid growth, lines of arrested growth (LAGs) are common and later growth was relatively slow. The common and widespread Late Triassic ichnogenus Brachychirotherium probably represents the track of an aetosaur.
Triassic–Jurassic Mass Extinction as Trigger for the Mesozoic Radiation of Crocodylomorphs
Toljagić, O., and R. J. Butler. 2013 Triassic–Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs. Biology Letters 9: 20130095. http://dx.doi.org/10.1098/rsbl.2013.0095
Abstract - Pseudosuchia, one of the two main clades of Archosauria (Reptilia: Diapsida), suffered a major decline in lineage diversity during the Triassic–Jurassic (TJ) mass extinction (approx. 201 Ma). Crocodylomorpha, including living crocodilians and their extinct relatives, is the only group of pseudosuchians that survived into the Jurassic.We reassess changes in pseudosuchian morphological diversity (disparity) across this time interval, using considerably larger sample sizes than in previous analyses. Our results show that metrics of pseudosuchian disparity did not change significantly across the TJ boundary, contrasting with previous work suggesting low pseudosuchian disparity in the Early Jurassic following the TJ mass extinction. However, a significant shift in morphospace occupation between Late Triassic and Early Jurassic taxa is recognized, suggesting that the TJ extinction of many pseudosuchian lineages was followed by a major and geologically rapid adaptive radiation of crocodylomorphs. This marks the onset of the spectacularly successful evolutionary history of crocodylomorphs in Jurassic and Cretaceous ecosystems.
Two New 'Rauisuchid' Papers
Abstract - Postosuchus kirkpatricki is a Late Triassic (Norian) ‘rauisuchid’ archosaur from North America. The initial description of the Postosuchus type material included elements from two poposaurids. This confusion has prevented adequate description of the material. Recent examination of the type material and other specimens of Postosuchus, and of related taxa, has helped clarify the osteology of Postosuchus. The type specimens represent c. 75% of the skeleton. Together with other referred material, Postosuchus remains one of the most completely known rauisuchids. The paratype skeleton, which is relatively complete, would have been c. 3.5–4 m in length, and the holotype would have been closer to 5–6 m.
Analysis of the postcranial skeleton of Postosuchus suggests that it may have been an obligate biped (based in part on limb proportions, which are similar to some theropod dinosaurs, the size of the manus (30% of the size of the pes) and the highly reduced nature of the digits and vertebral measurements). Possible postcranial autapomorphies of Postosuchus include a large, rugose triangular supra-acetabular buttress confluent with the dorsal margin of the iliac blade, and a symmetrical pes with digits two and three being roughly equal in length.
De Franca, M. A. G., Langer, M. C., and J. Ferigolo. 2013. The skull anatomy of Decuriasuchus quartacolonia (Pseudosuchia: Suchia: Loricata) from the middle Triassic of Brazil. In Nesbitt, S. J., Desojo, J. B. and R. B. Irmis, (eds) Anatomy, Phylogeny and Palaeobiology of Early Archosaurs and their Kin. Geological Society, London, Special Publications, 379, doi:10.1144/SP379.8
Abstract - Unlike most rauisuchians, which are known based on partially preserved specimens, fossils attributed to Decuriasuchus quartacolonia include a monotaxonomic assemblage composed of nine associated individuals (MCN-PV10.105a–i), three with almost complete skulls (MCN-PV10.105a,c,d), and a partial disarticulated skull (MCN-PV10.004) collected in the Middle Triassic (Ladinian, Dinodontosaurus Biozone) beds of the Santa Maria Formation, in south Brazil. Because of its completeness and possible phylogenetic position, as one of the most basal loricatans, D. quartacolonia is a key taxon for anatomic, evolutionary and biomechanical studies of rauisuchians. The comparative description of its osteology reveals that the skull and mandible of D.quartacolonia are very similar to those of cf. Prestosuchus chiniquensis and Saurosuchus galilei, sharing a drop-shaped subnarial fenestra, a subtriangular antorbital fenestra with an elongated and narrow anterior point, a ‘roman nosed’ nasal, and a posteroventrally oriented ridge on the lateral surface of the ventral ramus of the squamosal. Among the differences are the autapomorphies of D.quartacolonia: numerous maxillary teeth (17), lateral expansion of the nasal/lacrimal covering the antorbital fenestra dorsally, and squamosal and quadratojugal forming a subtriangular projection that invades the lower temporal fenestra.
New Volume on Triassic Archosaurs/ New Cranial Material of Poposaurus gracilis
The new volume includes overviews of many archosaurian clades including Euparkeriidae, Phytosauria, "Rauisuchia", Ornithosuchidae, and of course Aetosauria. There are also a plethora of other more specific papers. Currently the papers are being released "online first" and not all are up yet. I'm not even sure how many there are to be in the final volume, but you can consider this volume to be the " The Dinosauria" volume for non-ornithodiran archosauriforms and pseudosuchians. Keep checking back as more papers are released and at some point the printed volume should be available.
My own contribution is up. In 2003 a group from Yale University, assisted with staff from the Petrified Forest, excavated what turned out to be a nearly complete, articulated skeleton of the carnivorous pseudosuchian Poposaurus gracilis (more here and here). This specimen has been covered in several papers now (Gauthier et al., 2011; Schachner et al., 2011) and provides us with more information about poposauroids and their amazing convergence with theropod dinosaurs. Unfortunately, the skull of this specimen has eroded prior to dicovery. This was unfortunate because poposauroids show an amazing diversity of forms from presumably quadrupedal, sail-backed toothed forms (e.g., Arizonasaurus babbitti) , to bipedal edentulous forms (Effigia okeeffeae), and of course a quadrupedal sail-backed, edentulous form (Lotosaurus adentus) just to make things interesting. What is poorly understood is the congruence of the aquisition of these characters in poposauroid phylogeny. In this question, Poposaurus gracilis plays a key role as according to recent phylogenetic analyses of Archosauria (Nesbitt, 2011; Butler et al., 2011) it is a mid-grade poposauroid. It is clear from the Yale specimen that P. gracilis was bipedal and lacked a sail. A fragment of premaxilla found with the specimen suggested the presence of teeth but conformation was needed.
In 2008 Petrified Forest paleontology staff (Kate Hazlehurst and Jeff Martz) discovered a beautifully preserved ilium and pubis of Poposaurus gracilis from the base of the Sonsela Member in the park. Associated with this were a partial maxilla, dentary, and strangely a prearticular. These elements were not complete, but they were enough to show that the skull was very similar to other poposauroids like Arizonasaurus babbitti, but more importantly it confirmed that P. gracilis was toothed. The new paper by myself and colleague Sterling Nesbitt describes this new material and discusses its implications for specific character acquisition in the poposauroids. Essentially we find that character acquisition is very complex and evolving quickly within the group with a strong suggestion of convegent evolution not only with theropod dinosaurs but also within the clade Poposauroidea as well.
Parker, W. G., and S. J. Nesbitt. 2013. Cranial remains of Poposaurus gracilis (Pseudosuchia: Poposauroidea) from the Upper Triassic, the distribution of the taxon, and its implications for poposauroid evolution. From: Nesbitt, S. J., Desojo, J. B. & Irmis, R. B. (eds) Anatomy, Phylogeny and Palaeobiology of Early Archosaurs and their Kin. Geological Society, London, Special Publications, 379, http://dx.doi.org/10.1144/SP379.3
Abstract - The partial postcrania of Poposaurus gracilis, a bipedal poposauroid convergent with theropod dinosaurs, has been known for nearly a century, but the skull of P. gracilis has proven elusive. P. gracilis is part of a clade of morphologically divergent pseudosuchians (poposauroids) whose members are sometimes bipedal, lack dentition (i.e. beaks) and some have elongated neural spines (i.e. sails). However, the timing and acquisition of these character states is unknown given the uncertainty of the skull morphology of the ‘mid-grade’ poposauroid P. gracilis. Here, we present the first confirmed skull remains of P. gracilis directly associated with diagnostic pelvic elements that overlap with the holotype. The incomplete skeleton (PEFO 34865) from the Chinle Formation of Petrified Forest National Park (Arizona, USA) includes a left maxilla with a large, mediolaterally compressed tooth, left dentary, right prearticular and a partial postcranium. The character states of P. gracilis (bipedal, ‘sail-less’ and toothed) demonstrate that the evolution of bipedalism, the origin/loss of a dorsal ‘sail’ and the shift to an edentulous beak are complex in poposauroids. P. gracilis is widespread in the Upper Triassic formations in the western USA and is restricted temporally prior to the Adamanian–Revueltian faunal turnover during the Norian.
Paleohistological Estimation of Bone Growth Rate in Extinct Archosaurs
Hind limb osteology of Gracilisuchus stipanicicorum
Lecuona, A., and J. B. Desojo 2011. Hind limb osteology of Gracilisuchus
stipanicicorum (Archosauria: Pseudosuchia). Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 102, 105–128.
Abstract - Gracilisuchus stipanicicorum Romer, 1972, from the Middle-Late Triassic of the Ischigualasto–Villa Unio´n Basin of Argentina, is an extinct pseudosuchian archosaur on the stem to Crocodylomorpha. The pelvic girdle and hind limb anatomy of a referred specimen of Gracilisuchus stipanicicorum is described and compared with that from a broad range of archosauriform taxa, including basal members such as crurotarsans and basal ornithodirans. The description of this specimen reveals new information on the anatomy of the pelvic girdle and hind limb of Gracilisuchus, through a detailed examination of some anatomical regions barely or not previously described, as well as reinterpretations of previous features. The phylogenetic affinities of Gracilisuchus within the Archosauria remain to be tested, but Gracilisuchus shares two putative synapomorphies with some non-crocodyliform crocodylomorphs, providing tentative support for the monophyly of Sphenosuchia (e.g., Sereno & Wild 1992; Wu & Chatterjee 1993) and the close relationship of Gracilisuchus to that clade. These characteristics are: (i) the morphology and poor development of the femoral fourth trochanter, closely resembling the condition of Pseudhesperosuchus and Trialestes; and (ii) a poor anterior development of the femoral head, shared with Pseudhesperosuchus. On the other hand there are characters that reject the inclusion of Gracilisuchus within Crocodylomorpha (Nesbitt 2011), such as the absence of an imperforated acetabulum, and that rather suggests a sister-taxon position to Crocodylomorpha.
Dinosaurs Are Crurotarsans
Sterling Nesbitt’s upcoming detailed phylogenetic analysis of the Archosauria (Nesbitt, in press), which is previewed in the recent paper on Poposaurus by Gauthier et al. (2011), recovers phytosaurs as the sister taxon to Archosauria. This placement is extremely well-supported in his analysis and actually makes a lot of sense if you spend a lot of time working with this group and with pseudosuchians. As I noted earlier the recovery of Phytosauria outside of Archosauria changes the definition of Crurotarsi quite significantly, with Crurotarsi now the name of the clade Phytosauridae + Archosauria. This means that all ornithodirans including dinosaurs are now crurotarsans. Clearly this is not exactly what is meant when workers utilize this name.
This is also fairly significant in the evolutionary sense because it means that phytosaurs are ancestral to dinosaurs and other ornithodirans. Gauthier et al. (2011) discuss this ancestry in the sense of the functional ankle. They note that phytosaurs possess a primitive form of a crurotarsal joint that is quite different from that in suchians, and also that the ankle joint in the earliest ornithodiran, Lagosuchus, also utilizes crurotarsal motion that is lost in later ornithodirans with the development of the hinge-like ankle joint characteristic of that clade.
Overall the placement of phytosaurs outside of Archosauria is very well supported and may not be overturned. Thus, following Brochu (1997) I advocate the use of Pseudosuchia for the crocodylian branch of Archosauria to promote taxonomic stability. Furthermore, IMHO it is much easier and proper to use than non-ornithodiran crurotarsan, although I expect that more people will start to use Pan-Crocodylia for the clade because of the general dislike of the name Pseudosuchia.
“Careful attention to their [Crurotarsi and Pseudosuchia] ultimate distinctness can be a source of stability for future phylogenetic work. The definitions will remain stable, and we have a nomenclatural framework within which new fossils can be placed. Taxa more closely related to crocodiles than to birds, but not descended from the last common ancestor of parasuchians, ornithosuchids, prestosuchids, and suchians, will still be pseudosuchians. We fully expect diagnoses, group memberships, and minimum divergence times to change as new fossils or data sets are analyzed, and the parameters of Pseudosuchia and Crurotarsi will diverge as more basal pseudosuchians are found” (Brochu, 1997:448).
REFERENCES
Brochu, C. A. 1997. Synonymy, Redundancy, and the Name of the Crocodile Stem-Group. Journal of Vertebrate Paleontology 17:448-449.
Gauthier, J. A., Nesbitt, S. J., Schachner, E. R., Bever, G. S., and W. G. Joyce. 2011. The bipedal stem-crocodilian Poposaurus gracilis: inferring function in fossils and innovation in archosaur locomotion. Bulletin of the Peabody Museum of Natural History 52:107-126.
Nesbitt, S. J. in press. The early evolution of archosaurs: relationships and the origin of major clades. Bulletin of the American Museum of Natural History 352:1-292.
Senter, P. 2005. Phylogenetic taxonomy and the names of the major archosaurian (Reptilia) clades. PaleoBios 25:1–7.
Time Now for a Pseudosuchian - Desmatosuchus spurensis by Jeff Martz
Why I Use Pseudosuchia Instead of Crurotarsi for the Crocodile-line Archosaurs
This problem has been reviewed by several workers, such as Brochu (1997) and most recently Senter (2005). Gauthier and Padian (1985) defined Pseudosuchia as "crocodiles and all archosaurs closer to crocodiles than to birds"; however, Pseudosuchia has a much longer history dating back to the late 1800s, and although it has always had the intent of containing non-dinosaurian archosaurs, the membership of this clade has changed through the years and at some points even included some of what are now considered to be non-dinosaurian ornithodirans (the bird-line clade).
Several authors disliked Gauthier and Padian's (1985) redefining of what they considered to be an "ill-defined and misused" name. Furthermore, the name is in a sense contradictory as Pseudosuchia means "false-crocodiles" yet includes crocodiles as members. Accordingly Benton and Clark (1988) suggested a new name, "Crocodylotarsi", and although they did not explicitly define this clade they inferred that it was the same as Pseudosuchia. Sereno and Arcucci (1990) proposed a third name, Crurotarsi, which Sereno (1991) defined as "Parasuchia, Ornithosuchidae, Prestosuchus, Suchia, and all decendents of their common ancestor".
However, just because a group once contained members that have since been recognized as belonging to other groups does not warrant abandonment. Indeed if this were the case very few names would be valid, including Dinosauria. Likewise, contradictory names also are not grounds for dismissal, for example the name phytosaur means 'plant-reptile' although they surely ate everything but. Despite this we are still stuck with the contradictory name. Furthermore, there is no confusion among modern workers as to the meaning of Pseudosuchia, so statements to the contrary are moot. When I say something is a pseudosuchian, those familiar with archosaurs clearly understand what I mean.
Crocodylotarsi has been used by some workers but has since fallen out of usage with most modern workers using either Pseudosuchia or Crurotarsi. As all three groups currently have the same membership it has been argued by some that Pseudosuchia should be used as it has precedence. I agree in principle that the first defined name should have priority and this is the reason that I use Pseudosuchia instead of Crocodylotarsi. However, as noted by Brochu (1997) and Senter (2005) the definitions of Pseudosuchia and Crurotarsi are not the same.
Pseudosuchia is stem-based and thus is flexible to future changes, as any archosaur that is not an ornithodiran is included in this group. Crurotarsi, however, is defined as a node-based taxon and thus has an explicit membership, most notably phytosaurs (parasuchians), ornithosuchids, Prestosuchus, aetosaurs, "rauisuchians", and crocodylomorphs. This definition is much less flexible. In fact let's just suppose that the basal most group of crurotarsans, the phytosaurs, fell outside of the crown-clade Archosauria, and were instead considered to be derived archosauriforms. What would happen to Pseudosuchia and Crurotarsi? The content of Pseudosuchia would be pretty much the same except that phytosaurs would no longer be constituents. In contrast, because the base of Crurotarsi is specified by phytosaurs, Crurotarsi would now include phytosaurs plus all of Archosauria. Thus dinosaurs (including birds) would be Crurotarsans by definition. As you can see this definition is much less stable, another reason why I prefer and highly recommend that all workers use Pseudosuchia over Crurotarsi. Admit it, having to say "non-phytosaurian and non-ornithiodiran crurotarsan" is pretty clunky!
Actually, if this ever did happen ;), in my eyes Crurotarsi might actually now be a useful name when discussing phytosaurs, as you could now simply say that phytosaurs are the basalmost crurotarsans and still be correct. This is probably just slightly more explicit than simply saying they are derived archosauriforms.
For much more detail on this issue read Brochu (1997) and Senter (2005). You can also check out this page for a different opinion.
REFERENCES
Benton, M.J., and J.M. Clark. 1988. Archosaur phylogeny and the relationships of the Crocodylia. Pp. 295–338 in M.J. Benton (ed.). The Phylogeny and Classifi cation of the Tetrapods, Volume 1: Amphibians, Reptiles, Birds. Clarendon Press, Oxford.
Brochu, C.J. 1997. Synonymy, Redundancy, and the name of the crocodile stem group. Journal of Vertebrate Paleontology 17:448-449.
Gauthier, J., and K. Padian. 1985. Phylogenetic, functional, and aerodynamic analyses of the origin of birds and their flight. Pp. 185–197 in M.K. Hecht, J.H. Ostrom, G. Viohl, and P.
Wellnhofer (eds.). The Beginnings of Birds. Freunde des Jura- Museums, Eichstätt.
Senter, P. 2005. Phylogenetic taxonomy and the names of the major archosaurian (Reptilia) clades. PaleoBios 25:1–7.
Sereno, P.C. 1991. Basal archosaurs: phylogenetic relationships and functional implications. Society of Vertebrate Paleontology Memoir 2:1–53.
Sereno, P.C., and A.B. Arcucci. 1990. The monophyly of crurotarsal archosaurs and the origin of bird and crocodile ankle joints. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen
180:21–52.
Dinosauria vs. Pseudosuchia - New paper in Science
Today in the new issue of Science, Brusatte et al. provide the results of a multifaceted study addressing this question. They provide a new phylogenetic analysis of the Archosauria (supplementary materials) and compare evolutionary rates and morphological disparity between pseudosuchians and ornithodirans. Interestingly they found that the dinosaurs had lower disparity and represented a lesser amount of morphospace occupation compared to the pseudosuchians. Furthermore rates of character evolution between the two groups were indistinguishable. Previous hypotheses that the dinosaurs were more successful due to physiological superiority and were “preordained for success” are discounted (as was also argued by Irmis et al., 2007b). Instead Brusatte et al., suggest that the “dinosaurs were the beneficiaries of two mass extinction events – and some good luck”.
I admit that I am not surprised at all by their findings, but am probably biased because this trend is readily apparent in North America (where I work) where with the exception of the Hayden and Coelophysis Quarries at Ghost Ranch New Mexico (and trackways in the youngest Triassic units) there is a marked paucity of Triassic dinosaur fossils and an abundance of diverse pseudosuchians. I am a bit flummoxed over the basal positioning of Revueltosaurus in their phylogeny, but this is based on an incomplete coding which I have not thoroughly reviewed.
Overall I find the paper to be a useful contribution in the attempt to discern why such a wonderful diversity of crocodile-line archosaurs lineages was extinguished at the end Triassic. Their data helps quantify some of the trends seen by other workers, especially that the competition model is most likely untenable. However, disproving the competition scenario does not necessarily support the "lucky break" hypothesis. Furthermore, I have not seen strong evidence for a Carnian-Norian terrestrial extinction in the fossil record, a claim that is even more weakened by the recent announcement of a Rhaetian dicynodont, which supports known Norian dicynodonts in Arizona and rhynchosaurs in Brazil and Argentina. Recent published and unpublished studies revising the Late Triassic timescale demonstrate that much of the hypothesized Carnian terrestrial strata worldwide is probably actually Norian, thus at best there are very few Carnian age terrestrial assemblages (e.g., Muttoni et al., 2004; Furin et al., 2004). There is still much work to be done on this mystery and I for one am not quite ready yet to simply attribute it a “lucky break”; however if this is the case then I truly rue what would appear to be a cruel twist of fate, and can only wonder what might have come to pass if the pendulum had swung the other way.
REFERENCES
Brusatte, S.L., Benton, M.J., Ruta, M., and G.T. Lloyd. 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321:1485-1488.
Dzik, J. A beaked herbivorous archosaurs with dinosaur affinities from the early Late Triassic of Poland. Journal of Vertebrate Paleontology 23:556-574.
Ezcurra, M.D. 2007. A review of the systematic position of the dinosauriform archosaur Eucoelophysis baldwini Sullivan & Lucas, 1999 from the Upper Triassic of New Mexico, USA. Geodiversitas 28:649-684.
Furin, S., Preto, N., Rigo, M., Roghi, G., Gianolla, P., Crowley, J.L., and S. A. Bowring. 2006. High-precision U-Pb zircon age from the Triassic of Italy: Implications for the Triassic time scale and the Carnian origin of calcareous nannoplankton and dinosaurs. Geology 34:1009-1012.
Irmis, R.B., Parker, W.G., Nesbitt, S.J., and J. Liu, 2007a. Early ornithischian dinosaurs: the Triassic Record. Historical Biology 19:3-22.
Irmis, R.B., Nesbitt, S.J., Padian, K., Smith, N.D., Turner, A.H., Woody, D., and A. Downs. 2007b. A Late Triassic dinosauromorph assemblage from New Mexico and the rise of dinosaurs. Science 317:358-361.
Muttoni, G., Kent, D. V., Olsen, P. E., DiStefano, P., Lowrie, W., Bernasconi, S. M., and F. M. Hernández. 2004. Tethyan magnetostratigraphy from Pizzo Mondello (Sicily) and correlation to the Late Triassic Newark astrochronological polarity timescale. Geological Society of America Bulletin 116:1043-1058.
Nesbitt, S.J, and M.A. Norell. 2006. Extreme convergence in the body plans of an
early suchian (Archosauria) and ornithomimid dinosaurs (Theropoda). Proceedings of the Royal Society of London Series B 273: 1045–1048.
Nesbitt, S.J., Irmis, R.B., and W.G. Parker, 2007. A critical reevaluation of the Late Triassic dinosaur taxa of North America. Journal of Systematic Palaeontology 5:209-243.
Parker, W.G., Irmis, R.B., Nesbitt, S.N., Martz, J. W., and L. S. Browne, 2005. The pseudosuchian Revueltosaurus callenderi and its implications for the diversity of early ornithischian dinosaurs. Proceedings of the Royal Society London B 272:963-969.