Showing posts with label truly wierd. Show all posts
Showing posts with label truly wierd. Show all posts

If Azendohsaurus is not a Sauropodomorph Then What is it?

Would you believe an basal archosauromorph?

Flynn, J. J., Nesbitt, S. J., Parrish, J. M., Ranivoharimanana, L., and A. R. Wyss. 2010. A new species of Azendohsaurus (Diapsida: Archosauromorpha) from the Triassic Isalo Group of southwestern Madagascar: cranium and mandible. Palaeontology 53:669-688.

As if the Triassic couldn't get any weirder.  If this discovery does not finally demonstrate the peril of assigning isolated jaw fragments and teeth to various dinosaurian subgroups, I do not know what will.  The placement of Azendohsaurus as a basal archosauromorph demonstrates that herbivory has evolved independently numerous times within Archosauromorpha and was actually much more common in this clade than previously believed.  Some of the primitive cranial features found in Azendohsaurus include a pineal opening, an incomplete lower temporal bar, and palatal teeth.  One unique feature of Azendohsaurus is that the palatal teeth are actually leaf-shaped with denticles, very similar to the marginal teeth.


Skull reconstruction of Azendohsaurus. From Flynn et al. 2010.

Abstract - Here, we describe a new species of Azendohsaurus from the Middle–Late Triassic of Madagascar, extending the geographical range of a taxon known otherwise only by a single species from Morocco. Although Azendohsaurus has consistently been regarded as an early dinosaur (based on various advanced dental and gnathic features resembling those characterizing certain dinosaur subgroups), the relatively complete skeletal material, now available from Madagascar, argues strongly against its dinosaurian affinities. Rather, the retention of numerous primitive cranial and postcranial features indicates a surprisingly early divergence of Azendohsaurus within Archosauromorpha and an unusual mosaic of characters in this taxon. Features considered diagnostic of Sauropodomorpha thus are inferred to occur homoplastically in at least one clade of nondinosaurian archosauromorphs, indicating a complex evolution and distribution of features traditionally thought to be derived within archosaurs. Azendohsaurus has teeth resembling those of both early sauropodomorph and ornithischian dinosaurs, yet also possesses numerous inarguable basal archosauromorph cranial and postcranial attributes. This highlights the risk of uncritically referring isolated, Middle–Late Triassic (or even later), ‘leafshaped’ teeth with denticles to the Dinosauria. Similarly, the occurrence of such teeth in an early diverging archosauromorph indicates that specializations for herbivory originated more frequently within this clade than conventionally assumed. For example, Azendohsaurus and numerous basal sauropodomorph dinosaur taxa share an array of convergently acquired features associated with herbivory, including tooth denticles, expanded tooth crowns, a downturned dentary and the articular located at the ventral margin of the mandible. Some of these features (denticles, expanded crowns and the ventrally deflected articular) are even more widespread among archosauromorphs, including aetosaurs, silesaurs and ornithischian dinosaurs. A downturned dentary also occurs in Trilophosaurus, a taxon further marked by unique specializations for herbivory, including transversely lophate, tricuspid teeth. An array of features associated with herbivory also occur in rhynchosaurs and certain crocodilians (e.g. Simosuchus). This distribution suggests that craniodental features associated with herbivory were much more pervasive across the archosauromorph clade than previously recognized, possibly evolving at least six to eight times independently.

Limusaurus and Bird Digit Identity

For those of you who may have missed this or are not subscribed to the Dinosaur Mailing List, this is a comment left for my recent post on Limusaurus, the strange new beaked ceratosaur from China. One of the purported significances of this specimen is that it shed light on the debate on dinosaur digit homologies. As you can see below, this new article is a response to that claim.

A. Vargas has left a new comment on your post "Limusaurus inextricabilis, a Bizarre Beaked Cerato...":

Vargas, AO, Wagner GP, and Gauthier, JA. Limusaurus and bird digit identity.

hdl.handle.net/10101/npre.2009.3828.1

Here is our response to the Limusaurus paper. It was recently rejected by nature, not for any technical reason but because it was considered not to be of sufficient interest/importance.
We have uploaded it at the nature precedings citable archive, because we think it is important there is a quick and citable reply that unlike Xu’s proposal, is consistent with the view of the larger community of theropod paleontologists, namely, that tetanuran digits still are I, II, III. We are preparing a longer paper on this topic.

Limusaurus inextricabilis, a Bizarre Beaked Ceratosaur from the Late Jurassic of China

OK...OK....This post is regarding the Jurassic, and the Late Jurassic specifically, but it is almost Triassic right? Sort of? Still, this is just to cool of a discovery not to mention.

Today's issue of Nature contains an article by Dr. James Clark (George Washington University) and Xu Xing (Chinese Academy of Science's Institute of Vertebrate Paleontology and Paleoanthropology in Beijing) and colleagues titled "A Jurassic ceratosaur from China and its significance fortheropod digit reduction and avian digital homologies". The paper describes a new beaked ceratosaur (yes, beaked ceratosaur) from the Jurassic of China. This new specimen also offers key information regarding the interpretation of digit homology between non- avian and avian dinosaurs.




As Tom Holtz noted to me in an earlier e-mail message....this is a "ceratosaur convergent on Effigia (a Triassic pseudosuchian): Truly weird!". I could not have summed it up any better!

Kudos also to my friend and colleague Sterling Nesbitt and to fellow blogger David Hone who are co-authors on this paper.




The following text is from the Reuters News Release . Photos are from here.

Limusaurus inextricabilis (meaning "mire lizard who could not escape") was found in 159 million-year-old deposits located in the Junggar Basin of Xinjiang, northwestern China. The dinosaur earned its name from the way its skeletons were preserved, stacked on top of each other in fossilized mire pits that were the subject of a 2008 National Geographic film, "Dino Death Trap."

A close examination of the fossil shows that its upper and lower jaws were toothless, demonstrating that the dinosaur possessed a fully developed beak. Its lack of teeth, short arms without sharp claws and possession of gizzard stones suggest that it was a plant-eater, though it is related to carnivorous dinosaurs.

The newly discovered dinosaur's hand is unusual and provides surprising new insights into a long-standing controversy over which fingers are present in living birds, which are theropod dinosaur descendants. The hands of theropod dinosaurs suggest that the outer two fingers were lost during the course of evolution and the inner three remained. Conversely, embryos of living birds suggest that birds have lost one finger from the outside and one from the inside of the hand.

Unlike all other theropods, the hand of Limusaurus strongly reduced the first finger and increased the size of the second. Drs. Clark and Xu and their co-authors argue that Limusaurus' hand represents a transitional condition in which the inner finger was lost and the other fingers took on the shape of the fingers next to them. The three fingers of most advanced theropods are the second, third and fourth fingers -- the same ones indicated by bird embryos -- contrary to the traditional interpretation that they were the first, second and third.

Limusaurus is the first ceratosaur known from East Asia and one of the most primitive members of the group. Ceratosaurs are a diverse group of theropods that often bear crests or horns on their heads, and many have unusual, knobbyfingers lacking sharp claws.The fossil beds in China that produced Limusaurus have previously yielded skeletons of a variety of dinosaurs and contemporary animals described by Drs.Clark and Xu and their colleagues. These include the oldest tyrannosaur, Guanlong wucaii; the oldest horned dinosaur, Yinlong downsi; a new stegosaur, Jiangjunosaurus junggarensis; and the running crocodile relative, Junggarsuchus sloani.

REFERENCE

Xing Xu et al, 2009. A Jurassic ceratosaur from China helps clarify avian digital homologies. Nature 459:940. doi:10.1038/nature08124