Principal Features of the Mammalian Nasal Cavity were Present in Triassic Eucynodonts

Ruf, I., Maier, W., Rodrigues, P. G., and C. L. Schultz. 2014. Nasal Anatomy of the Non-mammaliaform Cynodont Brasilitherium riograndensis (Eucynodontia, Therapsida) Reveals New Insight into Mammalian Evolution. The Anatomical Record 297: 2018–2030. DOI: 10.1002/ar.23022
Abstract - The mammalian nasal cavity is characterized by a unique anatomy with complex internal features. The evolution of turbinals was correlated with endothermic and macrosmatic adaptations in therapsids and in early mammals, which is still apparent in their twofold function (warming and moistening of air, olfaction). Fossil evidence for the transformation from the nonmammalian to the mammalian nasal cavity pattern has been poor and inadequate. Ossification of the cartilaginous nasal capsule and turbinals seems to be a feature that occurred only very late in synapsid evolution but delicate ethmoidal bones are rarely preserved. Here we provide the first µCT investigation of the nasal cavity of the advanced non-mammaliaform cynodont Brasilitherium riograndensis from the Late Triassic of Southern Brazil, a member of the sister-group of mammaliaforms, in order to elucidate a critical anatomical transition in early mammalian evolution. Brasilitherium riograndensis already had at least partially ossified turbinals as remnants of the nasoturbinal and the first ethmoturbinal are preserved. The posterior nasal septum is partly ossified and contributes to a mesethmoid. The nasal cavity is posteriorly expanded and forms a distinctive pars posterior (ethmoidal recess) that is ventrally separated from the nasopharyngeal duct by a distinct lamina terminalis. Thus, our observations clearly demonstrate that principal features of the mammalian nasal cavity were already present in the sister-group of mammaliaforms.

Panguraptor lufengensis, a New Coelophysoid Theropod Dinosaur from the Lower Jurassic of China

You, H.-L., Azuma, Y., Wang, T., Wang, Y.-M., and Z.-M. Dong. 2014. The first well-preserved coelophysoid theropod dinosaur from Asia. Zootaxa 3873:233–249.

Abstract - Previously reported coelophysoid material from Asia (excluding the Gondwanan territory of India) is limited to two specimens that comprise only limb fragments. This paper describes a new genus and species of coelophysoid, Panguraptor lufengensis, from the Lower Jurassic Lufeng Formation of Yunnan Province, China. The new taxon is represented by a well-preserved skeleton, including the skull and lower jaw, the presacral vertebral column and partial ribs, the right scapula, a partial forelimb, part of the pelvic girdle, and an almost complete hind limb. It is distinguished from other coelophysoid theropods by the unique combination of the following three character states: 1) diagonal (rostrodorsal-caudoventral) ridge on lateral surface of maxilla, within antorbital fossa, 2) elliptical, laterally facing fenestra caudodorsal to aforementioned diagonal ridge, and 3) hooked craniomedial corner of distal tarsal IV. Cladistic analysis recovers Panguraptor lufengensis deeply nested within Coelophysoidea as a member of Coelophysidae, and it is more closely related to Coelophysis than to “Syntarsus”. Panguraptor represents the first well-preserved coelophysoid theropod dinosaur from Asia, and provides fresh evidence supporting the hypothesis that terrestrial tetrapods tended to be distributed pan-continentally during the Early Jurassic.

Functional and Biomechanic Aspects of the Scapular Girdle and Forelimbs of Unaysaurus tolentinoi

Vargas-Peixoto, D., Stock Da-Rosa, Á, A., and M. A. G. França. 2014. Functional and biomechanic aspects of the scapular girdle and forelimbs of Unaysaurus tolentinoi Leal et al., 2004 (Saurischia: Sauropodomorpha). Journal of South American Earth Sciences. Accepted Manuscript. DOI: 10.1016/j.jsames.2014.09.024

Abstract -
 This study presents evidence about the biomechanics and forelimbs functionality of the basal sauropodomorph Unaysaurus tolentinoi (upper portion of the SM2 sequence, Santa Maria Supersequence, Upper Triassic from southern Brazil). Maximum and minimum motion angles were inferred in the joints, disregarding the presence and/or thickness of cartilage. Furthermore, processes and external structures of the bones were analyzed in attributing the functionality of forelimbs. Unaysaurus tolentinoi had well-developed grapple ability. However, the preserved elements and their osteological features are not conclusive about strictly bipedalism or quadrupedalism in U. tolentinoi.

Tachiraptor admirabilis and the Early Dispersal of Dinosaurs after the end-Triassic Extinction

Langer, M. C., Rincón, A. D., Ramezani, J., Solórzano, A., and O. W. M. Rauhut. 2014. New dinosaur (Theropoda, stem-Averostra) from the earliest Jurassic of the La Quinta Formation,
Venezuelan Andes. Royal Society Open Science 1: 140184.
http://dx.doi.org/10.1098/rsos.140184

Abstract - Dinosaur skeletal remains are almost unknown from northern South America. One of the few exceptions comes from a small outcrop in the northernmost extension of the Andes, along the
western border of Venezuela, where strata of the La Quinta Formation have yielded the ornithischian Laquintasaura venezuelae and other dinosaur remains. Here, we report isolated bones (ischium and tibia) of a small new theropod, Tachiraptor admirabilis gen. et sp. nov., which differs from all previously known members of the group by an unique suite of features of its tibial articulations. Comparative/phylogenetic studies place the new form as the sister taxon to Averostra, a theropod group that is known primarily from the Middle Jurassic onwards. A new U–Pb zircon date (isotope dilution thermal-ionization mass spectrometry; ID-TIMS method) from the bone bed matrix suggests an earliest Jurassic maximum age for the La Quinta Formation. A dispersal–vicariance analysis suggests that such a stratigraphic gap is more likely to be filled by new records from north and central Pangaea than from southern areas. Indeed, our data show that the sampled summer-wet equatorial belt, which yielded the new taxon, played a pivotal role in theropod evolution across the Triassic–Jurassic boundary

Tachiraptor admirabilis, a New Theropod Dinosaur from the Earliest Jurassic of Venezuela

     MAURÍLIO OLIVEIRA


The paper will be out on October 8th, but Science's website already has a news article up about the find. It is from the same locality as the early ornithischian dinosaur Laquintasaura, which was described earlier this year.